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Name: ..………………………………………………………………………………. 
 

Student Number: …………………………………………………………………….. 

 

Test 5 on WPPH16001.2020-2021 
“Electricity and Magnetism”  

Content: 4 questions with answers, grading scheme and analysis of typical mistakes 

Friday May 21 2021; online, 14:00-16:00 

• Write your full name and student number on each page you use  
• Read the questions carefully. Read them one more time after having answered them to ensure 

you have answered exactly what you were asked for. 
• Compose your answers is such a way that it is well indicated which (sub)question they 

address 
• Upload the answer to each question as a separate pdf file 
• Do not use a red pen (it’s used for grading) 
• Griffiths’ textbook, lecture notes and your tutorial notes are allowed. The internet, mobile 

phones, consulting, requests for consultancy and other teamwork are not allowed and 
considered as cheating 

 

Exam drafted by (name first examiner) Maxim S. Pchenitchnikov 

Exam reviewed by (name second examiner) Steven Hoekstra 

_________________________________________________________________________________ 

For administrative purposes; do NOT fill the table  

The weighting of the questions: 

 Maximum points Averaged points scored 

Question 1 10 6.5 

Question 2 15 9.1 

Question 3 11 7.3 

Question 4 8 5.7 

Total 44 27.2 

Grade = 1 + 9 x (score/max score). 

 

Averaged grade: 7 
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Question 1. (10 points) 

A long ideal solenoid with radius 𝑅𝑅 and 𝑛𝑛 turns per unit length, carries a constant current of 𝐼𝐼.  

1. Find the energy density 𝑢𝑢 stored in the fields. (2 points) 
Now the current is slowly decreased to zero. The precise way of doing it doesn’t 
matter; it could be e.g. a linear or exponential dependence on time.  

2. Show that the electric field  𝐄𝐄�⃗  inside the solenoid in the quasistatic 
approximation is described as  

𝐄𝐄�⃗ = −
𝜇𝜇0𝑛𝑛

2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑠𝑠 𝛟𝛟�   (2 points) 

where 𝑠𝑠 is the distance from the solenoid axis in the cylindrical system of coordinates. 

3. Calculate Poynting’s vector inside the solenoid at the distance 𝑠𝑠 from the solenoid axis. 
(2 points) 

4. Show that the local energy conservation law holds. (4 points) 
 
Answers 

𝟏𝟏.𝐁𝐁��⃗ = 𝜇𝜇0𝑛𝑛𝑛𝑛 𝐳𝐳� (inside; from the formula sheet) 

Energy density: 𝑢𝑢 =
1
2

1
𝜇𝜇0
𝐵𝐵2 =

1
2𝜇𝜇0

𝜇𝜇02𝑛𝑛2𝐼𝐼2 =
𝜇𝜇0𝑛𝑛2𝐼𝐼2

2
  (2 points) 

2. Using the Ampèrian loop as a circle with radius of 𝑠𝑠 around the solenoid 
axis and applying Ampère’s law in the integral form: 

2𝜋𝜋𝜋𝜋𝐸𝐸 = 𝜋𝜋𝑠𝑠2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

;𝐄𝐄�⃗ = −
𝜇𝜇0𝑛𝑛

2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑠𝑠 𝛟𝛟�   (2 points) 

NB: the direction of 𝐄𝐄�⃗  might be indicated in the figure; this is also correct. 

UPD: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0 should be compensated by a minus sign in 𝐄𝐄�⃗ , for it to be in 
positive 𝛟𝛟�  direction. No points are deduced here for the wrong sign. 

𝟑𝟑. 𝐒⃗𝐒 ≡
1
𝜇𝜇0
�𝐄𝐄�⃗ × 𝐁𝐁��⃗ � = −

1
𝜇𝜇0
𝜇𝜇0𝑛𝑛

2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝜇𝜇0𝑛𝑛𝑛𝑛𝑛𝑛 𝐬𝐬� = −

𝜇𝜇0𝑛𝑛2

2
𝐼𝐼
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑠𝑠 𝐬𝐬�  (2 points) 

Again, the sign of 𝐒⃗𝐒 should be minus to be consistened with the right-hand system of 
coordinates. No points are deduced here for the wrong sign; only the correctness of 
expression counts. 
4. Local energy conservation law: 

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛁𝛁 ∙ 𝐒⃗𝐒;  (1 point) 

Calculating 𝛁𝛁 ∙ 𝐒⃗𝐒 in cylindrical system: 

𝜇𝜇0𝑛𝑛2𝐼𝐼
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
𝑠𝑠
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑠𝑠 ∙ 𝑠𝑠

𝜇𝜇0𝑛𝑛2

2
𝐼𝐼
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 𝜇𝜇0𝑛𝑛2𝐼𝐼

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  (3 points) 

Holds! 
Note for those who would like an extra challenge: check if the Poynting theorem holds.  
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Typical mistakes: 
● Vector notation was often neglected; especially in 𝛁𝛁 ∙ 𝐒⃗𝐒 
● Some students didn’t realize 𝐄𝐄�⃗ = 0 in question 1.1 
● Some students didn’t realize that 𝑑𝑑𝑑𝑑 = 0, as there are no charges present to exert work on 
● Some students incorrectly applied the inverse chain rule; many forgot the factor ½ when 

contracting 𝐼𝐼 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 into 𝑑𝑑𝐼𝐼
2

𝑑𝑑𝑑𝑑
. 

● Some students tried finding the energy density using the inductance instead of using the 
formula relating them directly. 

● Many students tried in 1.2 to explain a minus sign by noting that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0 is negative. This is 

not exactly a valid reasoning; the negativeness of  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is already in that expression implicitly. 
However, this was pardoned due to some inconsistency in the question. 

 

 
Question 2 (15 points) 

Consider two wires carrying identical currents 𝐼𝐼 into the figure plane, 
separated by distance 2𝑎𝑎 as shown in the figure. The equidistant plane 
(i.e. where the distances between this planе and each wire in the set are 
equal) is the xy plane.  

1. Find the magnetic field 𝐁𝐁��⃗  in the equidistant plane, expressed as a 
function of coordinate(s) and 𝑎𝑎. (4 points) 

2. Show that the Maxwell stress tensor 𝐓⃖𝐓�⃗  in the equidistant plane, 
expressed in the matrix form is given as: 

𝐓⃖𝐓�⃗ =
𝜇𝜇0𝐼𝐼2𝑦𝑦2

2𝜋𝜋2(𝑎𝑎2 + 𝑦𝑦2)2 �
−1 0 0
0 −1 0
0 0 +1

�   (5 points) 

3. Determine the force per unit length 𝐟𝐟 exerted on the lower wire by integrating the Maxwell 
stress tensor over the equidistant plane. Give your answers as 𝐟𝐟 = ⋯ (6 points) 

Tip 1: you might find useful to express the surface element 𝑑𝑑𝐚𝐚�⃗  in the xy plane in the Cartesian 
(not cylindrical!) coordinates. 

Tip 2: integrate over the 𝑦𝑦-coordinate from −∞ to +∞, and over the other coordinate from 
−𝐿𝐿 2⁄  to +𝐿𝐿 2⁄ , and then divide the result on 𝐿𝐿 
Tip 3: you might find useful the following integral:  

�
𝑦𝑦2

(𝑎𝑎2 + 𝑦𝑦2)2
∞

−∞
𝑑𝑑𝑑𝑑 =

𝜋𝜋
2𝑎𝑎
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Answers (see similar Problem 8.4) 
1. The magnetic field of an infinite wire is given in the 
еxtended formula sheet. The total magnetic field: 

𝐁𝐁��⃗ = 𝐁𝐁��⃗ 𝑈𝑈𝑈𝑈 + 𝐁𝐁��⃗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝜇𝜇0𝐼𝐼
2𝜋𝜋𝜋𝜋

𝝓𝝓�1 +
𝜇𝜇0𝐼𝐼
2𝜋𝜋𝜋𝜋

𝝓𝝓�𝟐𝟐 

=
𝜇𝜇0𝐼𝐼 cos𝜙𝜙
𝜋𝜋�𝑎𝑎2 + 𝑦𝑦2

𝐳𝐳�  (2 points) 

because the horizontal components of the two fields cancel 
each other (how convenient!). 

cos𝜙𝜙 =
𝑦𝑦

�𝑎𝑎2 + 𝑦𝑦2
 (1 point) 

𝐁𝐁��⃗ =
𝜇𝜇0𝐼𝐼𝐼𝐼

𝜋𝜋(𝑎𝑎2 + 𝑦𝑦2) 𝐳𝐳�    (1 point) 

Note that the magnetic field is independent of the 𝑥𝑥-coordinate, and has the 𝑧𝑧-component 
only. 

UPD there was a typo in the sign of 𝐁𝐁��⃗ : with the y-axis as shown, the sign should be plus as 
the y-direction is negative. No points are deduced for this.  
2. As there is no electric field, Maxwell’s tensor contains only the magnetic field 
components. Because the magnetic field has only the z-component, all non-diagonal elements 
are zero. (2 points) 

𝑇𝑇𝑖𝑖𝑖𝑖 ≡
1
𝜇𝜇0
�𝐵𝐵𝑖𝑖𝐵𝐵𝑗𝑗 −

1
2
𝛿𝛿𝑖𝑖𝑖𝑖𝐵𝐵2� 

𝐵𝐵2 =
𝜇𝜇02𝐼𝐼2𝑦𝑦2

𝜋𝜋2(𝑎𝑎2 + 𝑦𝑦2)2  (1 point) 

𝐓⃖𝐓�⃗ =
𝜇𝜇0𝐼𝐼2𝑦𝑦2

2𝜋𝜋2(𝑎𝑎2 + 𝑦𝑦2)2 �
−1 0 0
0 −1 0
0 0 +1

�   (2 points) 

3. Since we are in the magnetostatics regime, we know that the Poynting vector 𝐒⃗𝐒 = 0 (since 
there is no electric field). The force will only depend on the electromagnetic tensor and we 
calculate it in the following way: 

𝐅⃗𝐅 = � 𝐓⃖𝐓�⃗ ∙ 𝑑𝑑𝐚𝐚
𝒮𝒮

− 𝜖𝜖0𝜇𝜇0
𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝐒⃗𝐒 𝑑𝑑𝑑𝑑
𝒱𝒱

= � 𝐓⃖𝐓�⃗ ∙ 𝑑𝑑𝐚𝐚�⃗
𝒮𝒮

  (1 point) 

𝐓⃖𝐓�⃗ ∙ 𝑑𝑑𝐚𝐚�⃗ = ⋯�
−1 0 0
0 −1 0
0 0 +1

��
𝑑𝑑𝒂𝒂��⃗ 𝑥𝑥
𝑑𝑑𝒂𝒂��⃗ 𝒚𝒚
𝑑𝑑𝒂𝒂��⃗ 𝒛𝒛

� = ⋯𝑑𝑑𝒂𝒂��⃗ 𝒛𝒛  (1 point) 

so that 𝐹𝐹𝑧𝑧 component of the force is non-zero and 𝐹𝐹𝑥𝑥 = 𝐹𝐹𝑦𝑦 = 0 (1 point)  

In this particular case, we are evaluating the force exerted upon the lower wire. We are 
integrating other the 𝑥𝑥𝑥𝑥-plane, therefore the only non-zero component of the infinitesimal 
surface vector is the one pointing in the 𝑧𝑧-direction 𝑑𝑑𝑎𝑎𝑧𝑧 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑: 
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𝐹𝐹𝑧𝑧 = � 𝑇𝑇𝑧𝑧𝑧𝑧𝑑𝑑𝑑𝑑𝑧𝑧
𝒮𝒮

=
𝜇𝜇0𝐼𝐼2

2𝜋𝜋2
� 𝑑𝑑𝑑𝑑�

𝑦𝑦2

(𝑎𝑎2 + 𝑦𝑦2)2
∞

−∞
𝑑𝑑𝑑𝑑

𝐿𝐿
2

−𝐿𝐿2

  (1 point) 

=
𝜇𝜇0𝐼𝐼2

2𝜋𝜋2
𝐿𝐿
𝜋𝜋

2𝑎𝑎
=
𝜇𝜇0𝐼𝐼2

2𝜋𝜋
𝐿𝐿

1
2𝑎𝑎

 (1 point) 

𝐟𝐟 =
𝜇𝜇0𝐼𝐼2

4𝜋𝜋𝜋𝜋
 𝐳𝐳�  (1 point) 

Note for those interested: you can also verify this result by calculating the Lorentz force 
(Equation 5.16): 

𝐅⃗𝐅 = 𝐼𝐼 ��𝑑𝑑𝒍𝒍 × 𝐁𝐁��⃗ � = 𝐼𝐼𝐵𝐵2 � 𝑑𝑑𝑑𝑑
𝐿𝐿/2

−𝐿𝐿/2
 𝐳𝐳� = 𝐼𝐼𝐵𝐵2𝐿𝐿 𝐳𝐳� ;  𝐟𝐟 =

𝜇𝜇0𝐼𝐼2

4𝜋𝜋𝜋𝜋
 𝐳𝐳�  

Typical mistakes: 
● Some students appear to deduce the answer of 1.1 indirectly by looking at 1.2. However, as 

you are asked to derive the field, most points were granted for a correct derivation not your 
deduction abilities. 

● Answers were occasionally given without direction. 
● Incorrect integration of tensor. If you’re unsure how it works, write everything out in vector 

and matrix form. 
 
 
Question 3 (11 points) 

An electromagnetic monochromatic plane wave with amplitude 𝐸𝐸0, angular frequency 𝜔𝜔 and 
phase constant zero is traveling in the direction from the origin to the point (1, 1, 0), with 
polarization parallel to the 𝑥𝑥𝑥𝑥 plane.  

1. Show that the explicit Cartesian components of 𝐤⃗𝐤 and 𝐧𝐧� (i.e. the polarization vector) are 

𝐤⃗𝐤 =
𝜔𝜔
𝑐𝑐
�
𝐱𝐱� + 𝐲𝐲�
√2

�  and 𝐧𝐧� =
𝐱𝐱� − 𝐲𝐲�
√2

  (2 points) 

Tip: �𝐤⃗𝐤� should be equal to 
𝜔𝜔
𝑐𝑐

 

2. Write down the (real) electric field 𝐄𝐄�⃗ (𝐫⃗𝐫, 𝑡𝑡).   (4 points) 

3. Write down the (real) magnetic field 𝐁𝐁��⃗ (𝐫⃗𝐫, 𝑡𝑡) for the same wave. Don’t forget to express 𝐵𝐵0 
via 𝐸𝐸0.     (3 points) 

4. Sketch the 𝐄𝐄�⃗ ,𝐁𝐁��⃗  and 𝐤⃗𝐤 vectors of this electromagnetic wave.  (2 points) 
 
 
Solution Question 3 (Griffiths 9.9 modified) (11 points) 

𝟏𝟏. 𝐤⃗𝐤 =
𝜔𝜔
𝑐𝑐
�
𝐱𝐱� + 𝐲𝐲�
√2

� ;√2 comes from �𝐤⃗𝐤� =
𝜔𝜔
𝑐𝑐
→
𝜔𝜔
𝑐𝑐
��

𝐱𝐱� + 𝐲𝐲�
√2

�
2

=
𝜔𝜔
𝑐𝑐
�1 + 1

2
  (1 point for √2) 

Since 𝐧𝐧� is parallel to the xy plane, it must have the form 𝐧𝐧� = 𝛼𝛼𝐱𝐱� + 𝛽𝛽𝐲𝐲�; since 𝐧𝐧� ∙ 𝐤⃗𝐤 = 0,𝛽𝛽 =
−𝛼𝛼; and since 𝐧𝐧� is a unit vector, 𝛼𝛼 = 1/√2. (1 point) 
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𝐧𝐧� =
𝐱𝐱� − 𝐲𝐲�
√2

    

 

𝟐𝟐.𝐄𝐄��⃗ (𝐫⃗𝐫, 𝑡𝑡) = 𝐸𝐸�0𝑒𝑒𝑖𝑖�𝐤⃗𝐤∙𝐫⃗𝐫−𝜔𝜔𝑡𝑡� 𝐧𝐧�   (1 point)   
NB: of course, using cos/sin notations is also correct.     

𝐤⃗𝐤 ∙ 𝐫⃗𝐫 =
𝜔𝜔
𝑐𝑐
�
𝐱𝐱� + 𝐲𝐲�
√2

� ∙ (𝑥𝑥𝐱𝐱� + 𝑦𝑦𝐲𝐲�) =
𝜔𝜔
√2𝑐𝑐

(𝑥𝑥 + 𝑦𝑦)  (2 points) 

𝐄𝐄�⃗ (𝐫⃗𝐫, 𝑡𝑡) = 𝐸𝐸0 cos �
𝜔𝜔
√2𝑐𝑐

(𝑥𝑥 + 𝑦𝑦) − 𝜔𝜔𝑡𝑡� �
𝐱𝐱� − 𝐲𝐲�
√2

�    (1 point) 

No vector signs - minus 1 point. Note that the directions might be (correctly) depicted in the 
figure below. 
 

𝟑𝟑.𝐁𝐁���⃗ (𝐫𝐫, 𝑡𝑡) =
𝐸𝐸�0
𝑐𝑐
𝑒𝑒𝑖𝑖�𝐤⃗𝐤∙𝐫⃗𝐫−𝜔𝜔𝑡𝑡��𝐤̂𝐤 × 𝐧𝐧�� because 𝐵𝐵0 =

1
𝑐𝑐
𝐸𝐸0   (1 point) 

NB: of course, using cos/sin notations is also correct.     

�𝐤̂𝐤 × 𝐧𝐧�� =
1
2
�
𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
1 1 0
1 −1 0

� = −𝐳𝐳�   (1 point) 

𝐁𝐁��⃗ (𝐫⃗𝐫, 𝑡𝑡) =
𝐸𝐸0
𝑐𝑐

cos �
𝜔𝜔
√2𝑐𝑐

(𝑥𝑥 + 𝑦𝑦) − 𝜔𝜔𝑡𝑡� (−𝐳𝐳�)   (1 point) 

No vector signs - minus 1 point. Note that the directions might be (correctly) depicted in the 
figure below. 
 
4. (2 point in total) 

 
 
 
 
 
 
 

 
Typical mistakes: 

● Vector notation neglected.  
● Some students did not use/derive the proper real field equation, and some did not compute at 

all the product between k and n.  
● Some students had problems with the cross product computation, and some did not compute it 

at all. 
● Majority of the students made a sketch of the wave, instead of the (more simple) vector sketch 

of the fields as was asked.  
● Making drawings is apparently not a strong point of many…   
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Question 4 (8 points) 

Imagine a space object with the mass of 𝑚𝑚 = 419000 kg (similar to the International Space 
Station, ISS) and a cross-sectional area of 𝐴𝐴 = 2500 m2 (about the surface area of the solar 
panels on the ISS). Let’s take the intensity of solar radiation as 𝐼𝐼 = 1.4 kW/m2 (similar to 
Earth’s surface). 
1. Calculate the electric field strength of the Sun radiation in this region in SI units. (2 points) 
2. Calculate the force 𝐹𝐹𝑅𝑅 on the space object due to solar radiation in SI units. Assume that all 
radiation is absorbed. (3 points) 
3. Calculate the gravitational force 

𝐹𝐹𝐺𝐺 = 𝐺𝐺
𝑀𝑀𝑚𝑚
𝑟𝑟2

 

of the Earth (gravitational constant 𝐺𝐺 = 6.67 ∙ 10−11 N ∙ m2/kg2, Earth’s mass 𝑀𝑀 = 5.9 ∙
1024 kg) given that the object is approximately at 𝑟𝑟 = 108 km from Earth's center. (2 points) 
4. Which force is stronger? (1 point) 
 
Solution Question 4 

𝟏𝟏. 𝐼𝐼 =
1
2
𝑐𝑐𝜖𝜖0𝐸𝐸02;  𝐸𝐸0 = �

2𝐼𝐼
𝑐𝑐𝜖𝜖0

   (1 point) 

 𝐸𝐸0 = � 2 ∙ 1.4 ∙ 103

3 ∙ 108 ∙ 8.85 ∙ 10−12
≈ 103

V
m

  (1 point) 

 

𝟐𝟐.𝑝𝑝 =
𝐼𝐼
𝑐𝑐

=
1.4 ∙ 103

3 ∙ 108
≈ 4.6 ∙ 10−6  N m2⁄  (2 points) 

𝐹𝐹𝑅𝑅 = 𝑝𝑝𝑝𝑝 = 4.6 ∙ 10−6 ∙ 2500 = 1.2 ∙ 10−2 N (1 point) 
 

𝟑𝟑.𝐹𝐹𝐺𝐺 = 𝐺𝐺
𝑀𝑀𝑚𝑚
𝑟𝑟2

=
6.67 ∙ 10−11 ∙ 5.9 ∙ 1024 ∙ 419000

(1011)2 = 1.6 ∙ 10−2 N (2 points) 

𝟒𝟒.𝐹𝐹𝑅𝑅 ≈ 𝐹𝐹𝐺𝐺  (1 point) 
 
NB. As some of you mentioned during the exam, the distance here is a bit too long. This is 
true indeed so you could think of reformulating this problem for more “realistic” settings 
(you might also consult the last-year exam). Pls end me you suggestions – to be used next 
year! 
 
Typical mistakes: 

● No units given 
● Confusing E_0 with P=I/c  
● In 4.3, some students also forgot to square the r in the denominator. 
● The most mistakes resulted from simple calculation mistakes 
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